Discriminating variable test and selectivity ratio plot: quantitative tools for interpretation and variable (biomarker) selection in complex spectral or chromatographic profiles.

نویسندگان

  • Tarja Rajalahti
  • Reidar Arneberg
  • Ann C Kroksveen
  • Magnus Berle
  • Kjell-Morten Myhr
  • Olav M Kvalheim
چکیده

The discriminating variable (DIVA) test and the selectivity ratio (SR) plot are developed as quantitative tools for revealing the variables in spectral or chromatographic profiles discriminating best between two groups of samples. The SR plot is visually similar to a spectrum or a chromatogram, but with the most intense regions corresponding to the most discriminating variables. Thus, the variables with highest SR represent the variables most important for interpretation of differences between groups. Regions with variables that are positively or negatively correlated to each other are displayed as corresponding negative and positive regions in the SR plot. The nonparametric DIVA test is designed for connecting SR to discriminatory ability of a variable quantified as probability for correct classification. A mean probability for a certain SR range is calculated as the mean correct classification rate (MCCR) for all variables in the same SR interval. The MCCR is thus similar to a mean sensitivity in each SR interval. In addition to the ranking of all variables according to their discriminatory ability provided by the SR plot, the DIVA test connects a probability measure to each SR interval. Thus, the DIVA test makes it possible to objectively define thresholds corresponding to mean probability levels in the SR plot and provides a quantitative means to select discriminating variables. In order to validate the approach, samples of untreated cerebrospinal fluid (CSF) and samples spiked with a multicomponent peptide standard were analyzed by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The differences in the multivariate spectral profiles of the two groups were revealed using partial least-squares discriminant analysis (PLS-DA) followed by target projection (TP). The most discriminating mass-to-charge (m/z) regions were revealed by calculating the ratio of explained to unexplained variance for each m/z number on the target-projected component and displaying this measure in SR plots with quantitative boundaries determined from the DIVA test. The results are compared to some established methods for variable selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPOT-5 Spectral and Textural Data Fusion for Forest Mean Age and Height Estimation

Precise estimation of the forest structural parameters supports decision makers for sustainable management of the forests. Moreover, timber volume estimation and consequently the economic value of a forest can be derived based on the structural parameter quantization. Mean age and height of the trees are two important parameters for estimating the productivity of the plantations. This research ...

متن کامل

Standard Addition Connected to Selective Zone Discovering for Quantification in the Unknown Mixtures

Univariate calibration method is a simple, cheap and easy to use procedure in analytical chemistry. A univariate analysis will be successful if a selective signal can be found for the analyte(s). In this work, two simple ways were used to find the selective signals, spectral ratio plot (SRP) and loading plot (LP). Both of them were able to discover the selective regions in the recorded data set...

متن کامل

Identification of chemically selective displacers using parallel batch screening experiments and quantitative structure efficacy relationship models.

Parallel batch screening experiments were carried out to examine how displacer chemistry and salt counterions affect the selectivity of batch protein displacements in anion exchange chromatographic systems. The results indicate that both salt type and displacer chemistry can have a significant impact on the amount of protein displaced. Importantly, the results indicate that, by changing the dis...

متن کامل

ارائۀ ساده‌ترین نسبت‌های طیفی به‌منظور تشخیص برخی خصوصیات شیمیایی خاک در مناطق خشک با استفاده از تکنیک دورسنجی (مطالعۀ موردی: کویر درۀ انجیر بافق)

Introduction Understanding the spectral reflectance of different soils and other surface elements forms the basis for analyzing the process of interpreting remote sensing data. Spectral properties of the various phenomena of the Earth's surface are not constant and are changing, based on the complex time and space conditions. Determination of soil chemical properties using remote sensing techni...

متن کامل

Model Selection for Mixture Models Using Perfect Sample

We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 81 7  شماره 

صفحات  -

تاریخ انتشار 2009